skip to main content


Search for: All records

Creators/Authors contains: "Hill, Tessa M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Global trends of ocean warming, deoxygenation, and acidification are not easily extrapolated to coastal environments. Local factors, including intricate hydrodynamics, high primary productivity, freshwater inputs, and pollution, can exacerbate or attenuate global trends and produce complex mosaics of physiologically stressful or favorable conditions for organisms. In the California Current System (CCS), coastal oceanographic monitoring programs document some of this complexity; however, data fragmentation and limited data availability constrain our understanding of when and where intersecting stressful temperatures, carbonate system conditions, and reduced oxygen availability manifest. Here, we undertake a large data synthesis to compile, format, and quality-control publicly available oceanographic data from the US West Coast to create an accessible database for coastal CCS climate risk mapping, available from the National Centers for Environmental Information (accession 0277984) at https://doi.org/10.25921/2vve-fh39 (Kennedy et al., 2023). With this synthesis, we combine publicly available observations and data contributed by the author team from synoptic oceanographic cruises, autonomous sensors, and shore samples with relevance to coastal ocean acidification and hypoxia (OAH) risk. This large-scale compilation includes 13.7 million observations from 66 sources and spans 1949 to 2020. Here, we discuss the quality and composition of the synthesized dataset, the spatial and temporal distribution of available data, and examples of potential analyses. This dataset will provide a valuable tool for scientists supporting policy- and management-relevant investigations including assessing regional and local climate risk, evaluating the efficacy and completeness of CCS monitoring efforts, and elucidating spatiotemporal scales of coastal oceanographic variability.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. null (Ed.)
  3. null (Ed.)
  4. Marine protists are integral to the structure and function of pelagic ecosystems and marine carbon cycling, with rhizarian biomass alone accounting for more than half of all mesozooplankton in the oligotrophic oceans. Yet, understanding how their environment shapes diversity within species and across taxa is limited by a paucity of observations of heritability and life history. Here, we present observations of asexual reproduction, morphologic plasticity, and ontogeny in the planktic foraminifer Neogloboquadrina pachyderma in laboratory culture. Our results demonstrate that planktic foraminifera reproduce both sexually and asexually and demonstrate extensive phenotypic plasticity in response to nonheritable factors. These two processes fundamentally explain the rapid spatial and temporal response of even imperceptibly low populations of planktic foraminifera to optimal conditions and the diversity and ubiquity of these species across the range of environmental conditions that occur in the ocean. 
    more » « less
  5. Abstract. Microfossil assemblages provide valuable records to investigatevariability in continental margin biogeochemical cycles, including dynamicsof the oxygen minimum zone (OMZ). Analyses of modern assemblages acrossenvironmental gradients are necessary to understand relationships betweenassemblage characteristics and environmental factors. Five cores wereanalyzed from the San Diego margin (32∘42′00′′ N, 117∘30′00′′ W; 300–1175 m water depth) for core top benthic foraminiferalassemblages to understand relationships between community assemblages andspatial hydrographic gradients as well as for down-core benthic foraminiferalassemblages to identify changes in the OMZ through time. Comparisons ofbenthic foraminiferal assemblages from two size fractions (63–150 and>150 µm) exhibit similar trends across the spatial and environmental gradient or in some cases exhibit more pronouncedspatial trends in the >150 µm fraction. A range of speciesdiversity exists within the modern OMZ (1.910–2.586 H, Shannon index),suggesting that diversity is not driven by oxygenation alone. We identifytwo hypoxic-associated species (B. spissa and U. peregrina), one oxic-associated species (G. subglobosa) andone OMZ edge-associated species (B. argentea). Down-core analysis of indicator speciesreveals variability in the upper margin of the OMZ (528 m water depth) whilethe core of the OMZ (800 m) and below the OMZ (1175 m) remained stable inthe last 1.5 kyr. We document expansion of the upper margin of the OMZbeginning 400 BP on the San Diego margin that is synchronous with otherregional records of oxygenation. 
    more » « less
  6. Abstract

    In the face of ongoing marine deoxygenation, understanding timescales and drivers of past oxygenation change is of critical importance. Marine sediment cores from tiered silled basins provide a natural laboratory to constrain timing and implications of oxygenation changes across multiple depths. Here, we reconstruct oxygenation and environmental change over time using benthic foraminiferal assemblages from sediment cores from three basins across the Southern California Borderlands: Tanner Basin (EW9504‐09PC, 1,194 m water depth), San Nicolas Basin (EW9504‐08PC, 1,442 m), and San Clemente Basin (EW9504‐05PC,1,818 m). We utilize indicator taxa, community ecology, and an oxygenation transfer function to reconstruct past oxygenation, and we directly compare reconstructed dissolved oxygen to modern measured dissolved oxygen. We generate new, higher resolution carbon and oxygen isotope records from planktic (Globigerina bulloides) and benthic foraminifera (Cibicides mckannai) from Tanner Basin. Geochemical and assemblage data indicate limited ecological and environmental change through time in each basin across the intervals studied. Early to mid‐Holocene (11.0–4.7 ka) oxygenation below 1,400 m (San Clemente and San Nicolas) was relatively stable and reduced relative to modern. San Nicolas Basin experienced a multi‐centennial oxygenation episode from 4.7 to 4.3 ka and oxygenation increased in Tanner Basin gradually from 1.7 to 0.8 ka. Yet across all three depths and time intervals studied, dissolved oxygen is consistently within a range of intermediate hypoxia (0.5–1.5 ml L−1[O2]). Variance in reconstructed dissolved oxygen was similar to decadal variance in modern dissolved oxygen and reduced relative to Holocene‐scale changes in shallower basins.

     
    more » « less
  7. Abstract

    Ocean acidification is expected to degrade marine ecosystems, yet most studies focus on organismal‐level impacts rather than ecological perturbations. Field studies are especially sparse, particularly ones examining shifts in direct and indirect consumer interactions. Here we address such connections within tidepool communities of rocky shores, focusing on a three‐level food web involving the keystone sea star predator,Pisaster ochraceus, a common herbivorous snail,Tegula funebralis, and a macroalgal basal resource,Macrocystis pyrifera. We demonstrate that during nighttime low tides, experimentally manipulated declines in seawater pH suppress the anti‐predator behavior of snails, bolstering their grazing, and diminishing the top‐down influence of predators on basal resources. This attenuation of top‐down control is absent in pools maintained experimentally at higher pH. These findings suggest that as ocean acidification proceeds, shifts of behaviorally mediated links in food webs could change how cascading effects of predators manifest within marine communities.

     
    more » « less